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PULSE METHOD OF MEASURING THE THERMAL
DIFFUSIVITY OF SPHERICAL SAMPLES

S. V. Buzilov and L. D. Zagrebin UDC 536.2.083

Consideration is given to a version of the pulse method of measurement of the thermal diffusivity of spherical
samples with the use of laser heating. The method is based on solution of the heat-conduction equation in
a spherical coordinate system. The computerized experimental setup used is described. Measurement results
for the thermal diffusivity of Zr, Ni, Fe, Al are reported. The measurement error is no more than 5%,.

In [1-3] a pulse method of determination of the thermal diffusivity of liquid metals in a hemispherical form
is considered where the heat source is at the center of the flat surface and the delay time of the temperature signal
is measured at a point located some distance from the source of the thermal disturbance. High-temperature
investigations of thermal diffusivity using this version of the method have demonstrated the difficulty of introducing
corrections for heat transfer, especially for a flat surface. In connection with this it is reasonable to use a sample
in the form of a small-diameter drop, which in calculations can be approximated by a sphere of radius R with a
point source at a pole.

The temperature T at the point with the spherical coordinates (r, 6, p) caused by the action of a single
instantaneous point source, located at the pole (R; 0; 0) at the initial moment of time, at d* = R2+ 7% -
— 2Rr cos 8 is of the form [4]
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and is the solution of the problem of the temperature distribution in an unbounded medium.
Using the image method with account for the boundary conditions

;0T

=aT; 0<r<R; 0<0==x
or

r=R

T(r;6;,0)=0;

and expression (1), one can obtain the distribution of the temperature field in a sphere
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Fig. 1. Relative-temperature () distribution as a function of dimensionless
time (Fo) (the figures at the curves are values of 8, the solid curves refer to
Bi = 0, the dashed curves refer to Bi = 0.1).

Fig. 2. Schematic of the experimental setup.
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The temperature T'(r; 6; 1) = T ~ To will be referred to as the excess temperature if the ambient
temperature To # 0 and T is the sample temperature.

To measure thermal diffusivity, it is convenient to use dimensionless parameters. For this, expression (3)
at r = R, which corresponds to the temperature-field distribution on the sphere surface, can be written in terms of
the relative quantities #(6; Fo; Bi) as
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where 9 = ZnRapcpT/ Q; Fo=at/ R? has the meaning of dimensionless time; Bi = aR/A.

Figure 1 shows calculated dependences of the relative excess temperature on the Fourier number at
different points of the spherical surface for Bi = 0 and Bi = 0.1.
' Obtained expression (4) allows determination of the thermal diffusivity of metals and alloys on the
experimental setup (Fig. 2). A thermal pulse generated by GOR-100M laser 2 with a wavelength of 0.694 um is
sent to the pole of spherical sample 1 of radius R. The condition of a point source, ghe size of which is 0.3 mm
(0.3 << ), at the point of exposure is achieved by focusing the thermal pulse by lens 3 with a focal power of 10
diopters. To record a temperature signal in time, chromium-nickel thermocouple 4 with an electrode thickness of
0.05 mm was welded to the sphere surface at the angle 6. The thermocouple was protected against direct thermal
radiation with Al,O3 paste. The angle 6 was measured by means of a BMI-1Ts toolmaker’s microscope with an
accuracy of up to 1". Since the temperature drop reaches ~2°C on the sphere surface with the coordinates (R; 6;
0), amplifier 5 is used in the setup. To obtain a low level of noise and a high common-mode rejection factor, the
input stages of the amplifier are connected as differentiators on low-noise operational amplifiers of the type
K140UD17. To determine the reference point of a thermal signal, photodiode 6 is used. Amplified signals of the
photodiode and the thermocouple are sent via analog-to-digital converter 7 to computer 8 of the type IBM PC
[5].

The value of Fo;/; found from the theoretical (see Fig. 1) and computer-processed experimental (Fig. 3)
curves for the given 8 allows determination of the thermal diffusivity by the formula
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TABLE 1. Thermal-Diffusivity Values (a- 105, m?/sec) According to Experimental Data

Metal 1 2 3
Nickel 16.5 16 22.7
Iron 17.4 18 22.0
Zirconium 13.3 - 12.7
Aluminum 92.4 94 93.2

Note: 1 denotes data of the present authors; 2, [6]; 3, [7].
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Fig. 3. Experimental curve of the thermoelectromotive force obtained by a
Chromel-Alumel thermocouple for a nickel sample at R = 6.967 mm, 6 =
33°51’, U, mV; t, msec.

Fig. 4. Plot of Fo,/, vs. the angle 6.
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Figure 4 shows Foy /7 as a function of the angle 6.

The results of measurement of the thermal diffusivity of Ni (99.99), Zr (99.9), Al (99.99), and Armco iron
carried out at a temperature of 300 K (see Table 1) agree with the values obtained by the Parker pulse method
{61 and the method of temperature waves [7 1. It should be noted that the method of temperature waves gives the
overestimated results as compared to the pulse methods, and the discrepancy in the thermal-diffusivity values
obtained by different methods reaches 309, (see the references in [71]). The error in thermal-diffusivity measure-
ment does not exceed 5% and consists of:

' a) the measurement error due to the inaccuracy in the geometric dimensions of the sample in the experiment
(no more than 1%);

b) the standard deviation of the thermal diffusivity due to time measurement (in the course of the same
experiment it does not exceed 1%);

¢) the error of thermal-diffusivity measurement related to inaccurate determination of the angle 6, which
is related, in turn, to Foj/, (within the limits of 2—2.5%).

To sum up, the developed version of the pulse method of thermal-diffusivity measurement will allow
determination of thermophysical characteristics of small samples in the form of a drop at high temperatures in both
the solid and liquid states without changing the sample itself.

NOTATION

R, sphere radius; 6, angle; Fo, Fourier number; 9, relative temperature; Bi, Biot number; Fo, /2, Fourier
number corresponding to half the maximum relative temperature; 712, time in which the temperature signal reaches
half the maximum value; Q, released heat; p, density; a, thermal diffusivity; c,, heat capacity; «a, heat-transfer
coefficient; A, thermal conductivity.
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